Abstract

GPS and accelerometer tracking presently revolutionises the fields of ecology and animal behaviour. However, the effects of tag characteristics like weight, attachment and data quality on study outcomes and animal welfare are important to consider. In this study, we compare how different tag attachment types influence the behaviour of a group of tagged large waterbirds, GPS accuracy and behaviour classification success from accelerometer data. Both neckband and backpack tags had similar effects on the behaviour of six captive Canada geese (Branta canadensis), increasing the amount of discomfort behaviour in relation to untagged individuals. Both treatment groups also slightly decreased the amount of foraging, but the duration of neither vigilance nor resting was affected. GPS positions that were filtered with classical GPS platform settings (i.e. smoothing) were more accurate than positions improved by satellite-based differential augmentation. Tag attachment, however, did not induce any differences in position accuracy of both data types. Behaviour classification success was generally similar for neckband and backpack tags. But in detail, behaviours mainly performed by the head like foraging and vigilance were better detected from accelerometer data of neckband tags, whereas behaviours like resting and walking were more successfully detected from backpack tag data. Our findings suggest that the use of neckband or backpack tags for tracking large waterbirds and their behaviour largely depends on which behaviours are most important to detect. However, for wildlife tracking studies, factors like tag retention time are also of great importance, especially for animals like some goose species that are known to quickly destroy backpack tags. For future studies, we advise to carefully evaluate not only tag weight, but also attachment methods and data quality, because the right choice depends on the research question. This will improve the scope of wildlife tracking even more for various scientific, conservation and management applications.

Highlights

  • GPS and accelerometer tracking presently revolutionises the fields of ecology and animal behaviour

  • The geese reacted to backpacks and neckbands differently, but overall used the same amount of time for extra discomfort behaviour

  • Our results suggest that GPS accuracy from the particular backpack tags of this study was generally lower and more strongly improved by filtering and SBAS augmentation than neckband tags

Read more

Summary

Introduction

GPS and accelerometer tracking presently revolutionises the fields of ecology and animal behaviour. Other options for accuracy improvement are differential GPS systems [35], i.e. ground- and satellite-based augmentation systems (GBAS and SBAS), which can be applied to the data directly or by post-processing raw GPS data, i.e. satellite pseudo-ranges, protocol RXM-RAW [34]. The latter system is still under development in many countries and presently evaluated [36,37,38]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call