Abstract

Emerging evidence indicates that repetitive head impacts, even at a sub-concussive level, may result in exacerbated or prolonged neurological deficits in athletes. This study aimed to: 1) quantify the effect of repetitive head impacts on the alteration of neuronal activity based on functional magnetic resonance imaging (fMRI) of working memory after a high school football season; and 2) determine whether a neck collar that applies mild jugular vein compression designed to reduce brain energy absorption in head impact through "slosh" mitigation can ameliorate the altered fMRI activation during a working memory task. Participants were recruited from local high school football teams with 27 and 25 athletes assigned to the non-collar and collar group, respectively. A standard N-Back task was used to engage working memory in the fMRI at both pre- and post-season. The two study groups experienced similar head impact frequency and magnitude during the season (all p > 0.05). fMRI blood oxygen level dependent (BOLD) signal response (a reflection of the neuronal activity level) during the working memory task increased significantly from pre- to post-season in the non-collar group (corrected p < 0.05), but not in the collar group. Areas displaying less activation change in the collar group (corrected p < 0.05) included the precuneus, inferior parietal cortex, and dorsal lateral prefrontal cortex. Additionally, BOLD response in the non-collar group increased significantly in direct association with the total number of impacts and total g-force (p < 0.05). Our data provide initial neuroimaging evidence for the effect of repetitive head impacts on the working memory related brain activity, as well as a potential protective effect that resulted from the use of the purported brain slosh reducing neck collar in contact sports.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.