Abstract

It is well-known that some aromatic anions have the ability to induce viscoelastic transformation in aqueous solutions of cationic surfactants even at added salt concentrations as low as 10-20 mM. This behavior is associated with the formation of an entangled network of elongated micelles. However, the effect of aromatic ring substituents on the anion's ability to promote rapid micelle growth is not well-understood. We have performed ab initio calculations of the carbonyl group rotation barriers in a series of substituted benzoate and naphthoate anions at the MP2/STO-3G level of theory. It was found that aromatic carboxylates, known to be particularly effective in causing sphere-rod transition in cationic micelles, preferably adopt conformations with the COO(-) group in the same plane as the ring(s). This structural preference can be attributed to either intramolecular hydrogen bonding (o-hydroxyl derivatives) or pi-conjugation effects (m- and p-halogenated derivatives). In the former case the barrier to rotation is 40-50 kcal/mol, whereas in the latter case the threshold value is around 3.0 kcal/mol. Propensity for the planar conformation correlates with a greater depth of counterion penetration into the micelle surface, as inferred from NMR experiments, compared to the anions with less hindered carbonyl rotation. This points to favorable hydrophobic interactions between the surfactant methylene groups and the aromatic ring(s) of the anion as a possible explanation for the rapid growth of cationic micelles observed upon addition of certain aromatic carboxylates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call