Abstract

We study the covariance with respect to Darboux transformations of polynomial differential and difference operators with coefficients given by functions of one basic field. In the scalar (Abelian) case, the functional dependence is established by equating the Frechet differential (the first term of the Taylor series on the prolonged space) to the Darboux transform; a Lax pair for the Boussinesq equation is considered. For a pair of generalized Zakharov-Shabat problems (with differential and shift operators) with operator coefficients, we construct a set of integrable nonlinear equations together with explicit dressing formulas. Non-Abelian special functions are fixed as the fields of the covariant pairs. We introduce a difference Lax pair, a combined gauge-Darboux transformation, and solutions of the Nahm equations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.