Abstract

This technical note considers stability analysis of time-delay systems described by delay difference equations (DDEs). All existing analysis methods for DDEs that rely on the Razumikhin approach provide sufficient, but not necessary conditions for asymptotic stability. Nevertheless, Lyapunov-Razumikhin functions are of interest because they induce invariant sets in the underlying state space of the dynamics. Therefore, we propose a relaxation of the Razumikhin conditions and prove that the relaxed conditions are necessary and sufficient for asymptotic stability of DDEs. For linear DDEs, it is shown that the developed conditions can be verified by solving a linear matrix inequality. Moreover, it is indicated that the proposed relaxation of Lyapunov-Razumikhin functions has an important implication for the construction of invariant sets for linear DDEs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.