Abstract

The Landweber scheme is an algebraic reconstruction method and includes several important algorithms as its special cases. The convergence of the Landweber scheme is of both theoretical and practical importance. Using the singular value decomposition (SVD), we derive an iterative representation formula for the Landweber scheme and consequently establish the necessary and sufficient conditions for its convergence. In addition to verifying the necessity and sufficiency of known convergent conditions, we find new convergence conditions allowing relaxation coefficients in an interval not covered by known results. Moreover, it is found that the Landweber scheme can converge within finite iterations when the relaxation coefficients are chosen to be the inverses of squares of the nonzero singular values. Furthermore, the limits of the Landweber scheme in all convergence cases are shown to be the sum of the minimum norm solution of a weighted least-squares problem and an oblique projection of the initial image onto the null space of the system matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.