Abstract

The present paper deals with the necessary optimality condition for a class of distributed parameter systems in which the system is modeled in one-space dimension by a hyperbolic partial differential equation subject to the damping and mixed constraints on state and controls. Pontryagin maximum principle is derived to be a necessary condition for the controls of such systems to be optimal. With the aid of some convexity assumptions on the constraint functions, it is obtained that the maximum principle is also a sufficient condition for the optimality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.