Abstract

If A and B are two complex matrices and if U is a complex unitary matrix such that UAUCT = B (where UCT denotes the conjugate transpose of U), then A and B are said to be unitarily similar. Necessary and sufficient conditions that two matrices be unitarily similar have been dealt with in [5] (from the point of view of group representation theory) and in [2] (from the point of view of developing a canonical form under unitary similarity).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.