Abstract

For a composition of independent and identically distributed random maps or a memoryless stochastic flow on a compact space$X$, we find conditions under which the presence of locally asymptotically stable trajectories (e.g. as given by negative Lyapunov exponents) implies almost-sure mutual convergence of any given pair of trajectories (‘synchronization’). Namely, we find that synchronization occurs and is ‘stable’ if and only if the system exhibits the following properties: (i) there is asmallestnon-empty invariant set$K\subset X$; (ii) any two points in$K$are capable of being moved closer together; and (iii) $K$admits asymptotically stable trajectories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.