Abstract

We consider an inverse spectral problem that consists in the recovery of the differential expression coefficients for higher-order operators with separate boundary conditions from the spectral data (eigenvalues and weight numbers). This paper is focused on the principal issue of inverse spectral theory, namely, on the necessary and sufficient conditions for the solvability of the inverse problem. In the framework of the method of the spectral mappings, we consider the linear main equation of the inverse problem and prove the unique solvability of this equation in the self-adjoint case. The main result is obtained for the first-order system of the general form, which can be applied to higher-order differential operators with regular and distribution coefficients. From the theorem on the main equation’s solvability, we deduce the necessary and sufficient conditions for the spectral data for a class of arbitrary order differential operators with distribution coefficients. As a corollary of our general results, we obtain the characterization of the spectral data for the fourth-order differential equation in terms of asymptotics and simple structural properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.