Abstract

The paper considers nonsmooth neural networks described by a class of differential inclusions termed differential variational inequalities (DVIs). The DVIs include the relevant class of neural networks, introduced by Li, Michel and Porod, described by linear systems evolving in a closed hypercube of Rn. The main result in the paper is a necessary and sufficient condition for multistability of DVIs with nonsymmetric and cooperative (nonnegative) interconnections between neurons. The condition is easily checkable and provides a sharp bound between DVIs that can store multiple patterns, as asymptotically stable equilibria, and those for which this is not possible. Numerical examples and simulations are presented to confirm and illustrate the theoretic findings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.