Abstract

Cellular signaling mediated by the EGF receptor (EGFR) plays a key role in controlling proliferation and differentiation of cortical progenitor cells (CPCs). However, regulatory mechanisms of EGFR signaling in CPCs remain largely unknown. Here we demonstrate that necdin, a MAGE (melanoma antigen) family protein, interacts with EGFR in primary CPCs and represses its downstream signaling linked to astrocyte differentiation. EGFR was autophosphorylated and interacted with necdin in EGF-stimulated CPCs. Necdin bound to autophosphorylated EGFR via its tyrosine kinase domain. EGF-induced phosphorylation of ERK was enhanced in necdin-null CPCs, where the interaction between EGFR and the adaptor protein Grb2 was strengthened, suggesting that endogenous necdin suppresses the EGFR/ERK signaling pathway in CPCs. In necdin-null CPCs, astrocyte differentiation induced by the gliogenic cytokine cardiotrophin-1 was significantly accelerated in the presence of EGF, and inhibition of EGFR/ERK signaling abolished the acceleration. Furthermore, necdin strongly suppressed astrocyte differentiation induced by overexpression of EGFR or its ligand binding-defective mutant equivalent to a glioblastoma-associated EGFR variant. These results suggest that necdin acts as an intrinsic suppressor of the EGFR/ERK signaling pathway in EGF-responsive CPCs to restrain astroglial development in a cell-autonomous manner.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call