Abstract

To study the effects of a novel, intermittently administered, aerosolized nitric oxide donor, methyl-N-2-dimethylaminoethyl-3-aminoproprionid/nitric oxide (DMDE-NO), on pulmonary hemodynamic responses to sepsis. Prospective, randomized, controlled study in awake sheep. Investigational intensive care unit of a university medical center. Thirteen instrumented merino ewes weighing 36 +/- 0.9 kg underwent a hemodynamic study 1 wk postoperatively. On the day of the experiment, the sheep received a tracheotomy and mechanical ventilation was subsequently started. Pseudomonas aeruginosa bacteria were infused intravenously, beginning at time 0 hrs and continuing throughout the 48-hr experiment. The animals were randomly assigned to receive nebulized DMDE-NO 1 mg/kg, dissolved in 8 mL of saline (DMDE-NO group, n = 7), or nebulized saline alone (control group, n = 6) delivered by a nebulizer. The nebulizations started at 2, 6, 20, 24, and 43 hrs after the baseline, each time lasting for 1 hr. Inhaled aerosolized DMDE-NO reversibly reduced the sepsis-induced increase in pulmonary artery pressure by 13-17% and pulmonary vascular resistance index by 21-31% compared with the values registered before the administration of the drug. Systemic hemodynamics underwent an early hypodynamic phase followed by a gradual increase in cardiac index and a decrease in both mean arterial pressure and systemic vascular resistance index, but with no significant difference between groups. Gas exchange variables and plasma nitrite/nitrate did not differ significantly between groups either. In sheep, inhaled nebulized DMDE-NO reduces sepsis-induced changes in pulmonary hemodynamics with no change in systemic hemodynamics or gas exchange.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.