Abstract

Nebulised antibiotics offer great advantages over intravenously administered antibiotics and other conventional antibiotic formulations. However, their use is not widely standardized in the current clinical practice. This is the consequence of large variability in the performance of nebulisers, patient compliance and a deficiency of robust preclinical and clinical data. Nebulised antibiotherapy may play a significant role in future pulmonary drug delivery treatments as it offers the potential to achieve both a high local drug concentration and a lower systemic toxicity. In this review, the physicochemical parameters required for optimal deposition to the lung in addition to the main characteristics of currently available formulations and nebuliser types are discussed. Particular attention will be focused on emerging nanotechnology based approaches which are revolutionizing inhaled therapies used to treat both infections and lung cancer. Promising carriers such as Trojan-Horse microparticles, liposomes, polymeric and lipid nanoparticulate systems have been investigated and proposed as viable options. In order to achieve site-specific targeting and to optimize the PK/PD balance critical nanoscale design parameters such as particle size, morphology, composition, rigidity and surface chemistry architecture must be controlled. Development of novel excipients to manufacture these nanomedicines and assessment of their toxicity is also a keystone and will be discussed in this review.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.