Abstract

Nebulin is a giant 600- to 900-kDa filamentous protein that is an integral component of the skeletal muscle thin filament. Its functions have remained largely nebulous because of its large size and the difficulty in extracting nebulin in a native state from muscle. Recent improvements in the field, especially the development of knockout mouse models deficient in nebulin (NEB-KO mice), indicate now that nebulin performs a surprisingly wide range of functions. In addition to a major role in thin-filament length specification, nebulin also functions in the regulation of muscle contraction, as indicated by the findings that muscle fibers deficient in nebulin have a higher tension cost, and develop less force due to reduced myofilament calcium sensitivity and altered crossbridge cycling kinetics. In addition, the function of nebulin extends to a role in calcium homeostasis. These novel functions indicate that nebulin might have evolved in vertebrate skeletal muscles to develop high levels of muscle force efficiently. Finally, the NEB-KO mouse models also highlight the role of nebulin in the assembly and alignment of the Z disks. Notably, rapid progress in understanding the roles of nebulin in vivo provides clinically important insights into how nebulin deficiency in patients with nemaline myopathy contributes to debilitating muscle weakness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.