Abstract
Aims: Calcium oxalate (CaOx) crystal deposition induces damage to the renal tubular epithelium, increases epithelial adhesion, and contributes to CaOx nephrocalcinosis. The long noncoding RNA (lncRNA) nuclear paraspeckle assembly transcript 1 (NEAT1) is thought to be involved in this process. In this study, we aimed to investigate the mechanism by which NEAT1 regulates renal tubular epithelium in response to inflammatory and oxidative injury triggered by CaOx crystals. Results: As CaOx crystals were deposited in mouse kidney tissue, the expression of NEAT1 was significantly elevated and positively correlated with interferon regulatory factor 1 (IRF1), Toll-like receptor 4 (TLR4), and NF-κB. NEAT1 targets and inhibits miR-130a-3p as a competitor to endogenous RNA. miR-130 binds to and exerts inhibitory effects on the 3'-untranslated region of IRF1. After transfected with silence-NEAT1, IRF1, TLR4, and NF-κB were also variously inhibited, and oxidative damage in renal calcinosis was subsequently attenuated. When we simultaneously inhibited NEAT1 and miR-130, renal tubular injury was exacerbated. Innovation and Conclusion: We found that the lncRNA NEAT1 can enhance IRF1 signaling through targeted repression of miR-130a-3p and activate TLR4/NF-κB pathways to promote oxidative damage during CaOx crystal deposition. This provides an explanation for the tubular epithelial damage caused by CaOx crystals and offers new ideas and drug targets for the prevention and treatment of CaOx nephrocalcinosis. Antioxid. Redox Signal. 38, 731-746.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.