Abstract

The bright and stable single-photon emission under room temperature conditions from color centers in hexagonal boron nitride (hBN) is considered as one of the most promising quantum light sources for quantum cryptography as well as spin-based qubits, similar to recent advances in nitrogen-vacancy centers in diamond. To this end, integration with cavity or waveguide modes is required to enable ideally lossless transduction of quantum light states. Here, we demonstrate a scheme to embed hBN quantum emitters into on-chip arrays of metallo-dielectric antennas that provides near unity light collection efficiencies with experimental values up to 98%, i.e. a 7-fold enhancement compared to bare quantum emitters. Room-temperature quantum light emission in the 700 nm band is characterized with single-photon emission rates into the first lens up to 44 MHz under continuous excitation and up to 10 MHz under 80 MHz pulsed excitation (0.13 photons per trigger pulse) into a narrow output cone (±15°) that facilitates fiber butt-coupling. We furthermore provide here a direct measurement of the quantum yield under pulsed excitation with values of 6-12% for hBN nanoflakes. Our demonstrated scheme could enable low loss spin-photon interfaces on a chip.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.