Abstract
Abstract Midflight collisions with power lines impact 12 of the world’s 15 crane species, including 1 critically endangered species, 3 endangered species, and 5 vulnerable species. Power lines can be fitted with line markers to increase the visibility of wires to reduce collisions, but collisions can persist on marked power lines. For example, hundreds of Sandhill Cranes (Antigone canadensis) die annually in collisions with marked power lines at the Iain Nicolson Audubon Center at Rowe Sanctuary (Rowe), a major migratory stopover location near Gibbon, Nebraska. Mitigation success has been limited because most collisions occur nocturnally when line markers are least visible, even though roughly half the line markers present include glow-in-the-dark stickers. To evaluate an alternative mitigation strategy at Rowe, we used a randomized design to test collision mitigation effects of a pole-mounted near-ultraviolet light (UV-A; 380–395 nm) Avian Collision Avoidance System (ACAS) to illuminate a 258-m power line span crossing the Central Platte River. We observed 48 Sandhill Crane collisions and 217 dangerous flights of Sandhill Crane flocks during 19 nights when the ACAS was off, but just 1 collision and 39 dangerous flights during 19 nights when the ACAS was on. Thus, we documented a 98% decrease in collisions and an 82% decrease in dangerous flights when the ACAS was on. We also found a 32% decrease in the number of evasive maneuvers initiated within 25 m of the power line along the river, and a 71% increase in the number of evasive maneuvers initiated beyond 25 m when the ACAS was on. Sandhill Cranes reacted sooner and with more control, and experienced substantially fewer collisions, when the ACAS was on. Installation of the ACAS on other high-risk spans, and perhaps on other anthropogenic obstacles where birds collide, may offer a new solution to a long-running conservation dilemma.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.