Abstract

Commercial purity aluminum (A1070) was subjected to fine particle bombardment (FPB) with 1.0 mass% carbon steel and pure nickel projectile particles. Nanocomposite structures formed at the near-surface region, which contained refined aluminum grains of less than 100 nm in diameter and dispersed projectile fragments several tens of nanometer to several micrometer in size. Beneath the nanocomposite structure was found a fine-grained matrix with approximately 1-μm-diameter grains.Observation of the microstructural transition at the near-surface region suggested that the nanocomposite structures developed via severe plastic deformation (SPD), accompanied by a folding and imposing of the convex part of the surface, and by mechanical mixing with the fragments of the projectile particles.The nanocomposite structures exhibited high hardness values of approximately HV200, which are superior to those of extra-super duralumin (A7075-T6). The relationship between the grain size and hardness value in the structures corresponds well to the Hall–Petch relationship extrapolated from previous studies. Therefore, the increase in hardness is thought to be mainly the result of grain refinement strengthening.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.