Abstract

Abstract Polymeric material near a free surface can have properties which deviate considerably from the bulk properties. Many researchers have reported a reduced glass transition temperature in thin polymeric films and attributed this effect to an enhanced segmental mobility near a free surface. It was also reported that sufficiently thin polymeric structures show a higher ductility than the bulk material. In this paper, we therefore investigate the hypothesis that the near-surface mechanical properties of amorphous polymers differ from the bulk properties owing to the presence of an absolute length scale. Microindentations and nanoindentations are performed on polystyrene, using a range of indenter sizes and indentation loads. In addition, numerical simulations are carried out with an advanced material model for polystyrene. A comparison between the experimental and numerical results indeed indicates that a length-scale effect is present near the surface. Simulations performed at an elevated temperature indicate that our results are consistent with the observations of a reduced T g.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.