Abstract

The recently developed Ice, Cloud, and Land Elevation Satellite 2 (ICESat-2), furnished with the Advanced Terrain Laser Altimeter System (ATLAS), delivers considerable benefits in providing accurate bathymetric data across extensive geographical regions. By integrating active lidar-derived reference seawater depth data with passive optical remote sensing imagery, efficient bathymetry mapping is facilitated. In recent times, machine learning models are frequently used to define the nonlinear connection between remote sensing spectral data and water depths, which consequently results in the creation of bathymetric maps. A salient model among these is the convolutional neural network (CNN), which effectively integrates contextual information concerning bathymetric points. However, current CNN models and other machine learning approaches mainly concentrate on recognizing mathematical relationships within the data to determine a water depth function and remote sensing spectral data, while oftentimes disregarding the physical light propagation process in seawater before reaching the seafloor. This study presents a physics-informed CNN (PI-CNN) model which incorporates radiative transfer-based data into the CNN structure. By including the shallow water double-band radiative transfer physical term (swdrtt), this model enhances seawater spectral features and also considers the context surroundings of bathymetric pixels. The effectiveness and reliability of our proposed PI-CNN model are verified using in situ data from St. Croix and St. Thomas, validating its correctness in generating bathymetric maps with a broad experimental R2 accuracy exceeding 95% and remaining errors below 1.6 m. Preliminary results suggest that our PI-CNN model surpasses conventional methodologies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call