Abstract

BackgroundAir pollution exposure has been shown to increase the risk of obesity and metabolic dysfunction in animal models and human studies. However, the metabolic pathways altered by air pollution exposure are unclear, especially in adolescents and young adults who are at a critical period in the development of cardio-metabolic diseases. ObjectivesThe aim of this study was to examine the associations between air pollution exposure and indices of fatty acid and amino acid metabolism. MethodsA total of 173 young adults (18–23 years) from eight Children's Health Study (CHS) Southern California communities were examined from 2014 to 2018. Near-roadway air pollution (NRAP) exposure (freeway and non-freeway) and regional air pollution exposure (nitrogen dioxide, ozone and particulate matter) during one year before the study visit were estimated based on participants' residential addresses. Serum concentrations of 64 targeted metabolites including amino acids, acylcarnitines, non-esterified fatty acid (NEFA) and glycerol were measured in fasting serum samples. Principal component analysis of metabolites was performed to identify metabolite clusters that represent key metabolic pathways. Mixed effects models were used to analyze the associations of air pollution exposure with metabolomic principal component (PC) scores and individual metabolite concentrations adjusting for potential confounders. ResultsHigher lagged one-year averaged non-freeway NRAP exposure was associated with higher concentrations of NEFA oxidation byproducts and higher NEFA-related PC score (all p's ≤ 0.038). The effect sizes were larger among obese individuals (interaction p = 0.047). Among females, higher freeway NRAP exposure was also associated with a higher NEFA-related PC score (p = 0.042). Among all participants, higher freeway NRAP exposure was associated with a lower PC score for lower concentrations of short- and median-chain acylcarnitines (p = 0.044). ConclusionsResults of this study indicate that NRAP exposure is associated with altered fatty acid metabolism, which could contribute to the metabolic perturbation in obese youth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.