Abstract

Limited energy in each node is the major design constraint in wireless sensor networks (WSNs). To overcome this limit, wireless rechargeable sensor networks (WRSNs) have been proposed and studied extensively over the last few years. In a typical WRSN, batteries in sensor nodes can be replenished by a mobile charger that periodically travels along a certain trajectory in the sensing area. To maximize the charged energy in sensor nodes, one fundamental question is how to control the traveling velocity of the charger. In this paper, we first identify the optimal velocity control as a key design objective of mobile wireless charging in WRSNs. We then formulate the optimal charger velocity control problem on arbitrarily-shaped irregular trajectories in a 2D space. The problem is proved to be NP-hard, and hence a heuristic solution with a provable upper bound is developed using novel spatial and temporal discretization. We also derive the optimal velocity control for moving the charger along a linear (1D) trajectory commonly seen in many WSN applications. Extensive simulations show that the network lifetime can be extended by 2.5× with the proposed velocity control mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call