Abstract

In this paper, we prove an almost-optimal hardness for Max k-CSP_R based on Khot's Unique Games Conjecture (UGC). In Max k-CSP_R, we are given a set of predicates each of which depends on exactly k variables. Each variable can take any value from 1, 2, ..., R. The goal is to find an assignment to variables that maximizes the number of satisfied predicates. Assuming the Unique Games Conjecture, we show that it is NP-hard to approximate Max k-CSP_R to within factor 2^{O(k log k)}(log R)^{k/2}/R^{k - 1} for any k, R. To the best of our knowledge, this result improves on all the known hardness of approximation results when 3 <= k = o(log R/log log R). In this case, the previous best hardness result was NP-hardness of approximating within a factor O(k/R^{k-2}) by Chan. When k = 2, our result matches the best known UGC-hardness result of Khot, Kindler, Mossel and O'Donnell. In addition, by extending an algorithm for Max 2-CSP_R by Kindler, Kolla and Trevisan, we provide an Omega(log R/R^{k - 1})-approximation algorithm for Max k-CSP_R. This algorithm implies that our inapproximability result is tight up to a factor of 2^{O(k \log k)}(\log R)^{k/2 - 1}. In comparison, when 3 <= k is a constant, the previously known gap was $O(R)$, which is significantly larger than our gap of O(polylog R). Finally, we show that we can replace the Unique Games Conjecture assumption with Khot's d-to-1 Conjecture and still get asymptotically the same hardness of approximation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.