Abstract

It is shown that a single-layer array of high electric permittivity (high-ε) rods with a radius smaller than λ/10 is capable of reflecting more than 97% of the energy of optical waves with an arbitrary incident angle. Here, λ is the incident wavelength. The occurrence of the phenomenon depends on the construction of two particular grating modes (GMs) in the array which result in two corresponding transmitted wave components that cancel each other. The construction of the dominant GMs in the array benefits from the highly independent manipulability of the angular momenta components with opposite signs in high-ε particles. The effect offers the possibility to improve the optical elements integration level in on-chip optical circuits.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.