Abstract

A simple class of sequential tests is proposed for testing the one-sided composite hypotheses $H_0: \theta \leq \theta_0$ versus $H_1: \theta \geq \theta_1$ for the natural parameter $\theta$ of an exponential family of distributions under the 0-1 loss and cost $c$ per observation. Setting $\theta_1 = \theta_0$ in these tests also leads to simple sequential tests for the hypotheses $H: \theta \theta_0$ without assuming an indifference zone. Our analytic and numerical results show that these tests have nearly optimal frequentist properties and also provide approximate Bayes solutions with respect to a large class of priors. In addition, our method gives a unified approach to the testing problems of $H$ versus $K$ and also of $H_0$ versus $H_1$ and unifies the different asymptotic theories of Chernoff and Schwarz for these two problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.