Abstract

In a recent companion paper, we proposed two methods, GD+k and JDQMR, as nearly optimal methods for finding one eigenpair of a real symmetric matrix. In this paper, we seek nearly optimal methods for a large number, $nev$, of eigenpairs that work with a search space whose size is $O(1)$, independent from $nev$. The motivation is twofold: avoid the additional $O(nev N)$ storage and the $O(nev^2N)$ iteration costs. First, we provide an analysis of the oblique projectors required in the Jacobi–Davidson method and identify ways to avoid them during the inner iterations, either completely or partially. Second, we develop a comprehensive set of performance models for GD+k, Jacobi–Davidson type methods, and ARPACK. Based both on theoretical arguments and on our models we argue that any eigenmethod with $O(1)$ basis size, preconditioned or not, will be superseded asymptotically by Lanczos-type methods that use $O(nev)$ vectors in the basis. However, this may not happen until $nev > O(1000)$. Third, we perform an extensive set of experiments with our methods and against other state-of-the-art software that validates our models and confirms our GD+k and JDQMR methods as nearly optimal within the class of O(1) basis size methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.