Abstract
We estimate the Boolean complexity of multiplication of structured matrices by a vector and the solution of nonsingular linear systems of equations with these matrices. We study four basic and most popular classes, that is, Toeplitz, Hankel, Cauchy and Vandermonde matrices, for which the cited computational problems are equivalent to the task of polynomial multiplication and division and polynomial and rational multipoint evaluation and interpolation. The Boolean cost estimates for the latter problems have been obtained by Kirrinnis in [10], except for rational interpolation, and we supply them now. All known Boolean cost estimates from [10] for these problems rely on using Kronecker product. This implies the d-fold precision increase for the d-th degree output, but we avoid such an increase by relying on distinct techniques based on employing FFT. Furthermore we simplify the analysis and make it more transparent by combining the representations of our tasks and algorithms both via structured matrices and via polynomials and rational functions. This also enables further extensions of our estimates to cover Trummer's important problem and computations with the popular classes of structured matrices that generalize the four cited basic matrix classes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.