Abstract

Codebooks with small inner-product correlation are applied in many practical applications including direct spread code division multiple access (CDMA) communications, space–time codes and compressed sensing. It is extremely difficult to construct codebooks achieving the Welch bound or the Levenshtein bound. Constructing nearly optimal codebooks such that the ratio of its maximum cross-correlation amplitude to the corresponding bound approaches 1 is also an interesting research topic. In this paper, we firstly study a family of interesting character sums called generalized Jacobi sums over finite fields. Then we apply the generalized Jacobi sums and their related character sums to obtain two infinite classes of nearly optimal codebooks with respect to the Welch or Levenshtein bound. The codebooks can be viewed as generalizations of some known ones and contain new ones with very flexible parameters.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.