Abstract

Heavy silicon-doping in GaN generally causes a rough surface and saturated conductivity, while heavily silicon-doped n++-AlGaN with ≤5% aluminum can maintain an atomically flat surface and exhibit enhanced conductivity. Given this major advantage, we propose using multiple pairs of heavily silicon-doped n++-Al0.01Ga0.99N and undoped GaN instead of widely used multiple pairs of heavily silicon-doped n++-GaN and undoped GaN for the fabrication of a lattice-matched distributed Bragg reflector (DBR) by using an electrochemical (EC) etching technique, where the lattice mismatch between Al0.01Ga0.99N and GaN can be safely ignored. By means of using the EC etching technique, the n++-layers can be converted into nanoporous (NP) layers whilst the undoped GaN remains intact, leading to a significantly high contrast in refractive index between NP-layer and undoped GaN and thus forming a DBR. Our work demonstrates that the NP-Al0.01Ga0.99N/undoped GaN-based DBR exhibits a much smoother surface, enhanced reflectivity and a wider stopband than the NP-GaN/undoped GaN-based DBR. Furthermore, the NP-Al0.01Ga0.99N/undoped GaN-based DBR sample with a large size (up to 1 mm in width) can be obtained, while a standard NP-GaN/undoped GaN-based DBR sample obtained is typically on a scale of a few 100 μm in width. Finally, a series of DBR structures with high performance, ranging from blue to dark yellow, was demonstrated by using multiple pairs of n++-Al0.01Ga0.99N and undoped GaN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call