Abstract

Ions in ionically conducting materials show complex but universal trends in the time development of the mean squared displacements (MSD) of ions, which correspond to the complex frequency dependence conductivity spectra or susceptibility. Molecular dynamics simulations enable us to characterize the details of such motions including the initial nearly logarithmic or weak power law time dependence of the MSD of caged ions, showing up in susceptibility as the nearly constant loss (NCL) and the important connections of the caged ion dynamics to ion hopping dynamics in ionically conducting materials. In previous works, the motion of ions in the NCL region for lithium metasilicate was characterized at 700 and 500 K. Since each time region of MSD becomes longer and longer with decreasing temperature, the NCL region will cover the entire observation time during the MD run at lower temperatures, and thus enabling a more detailed study of the properties of the NCL. This paper reports results from new simulations at...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.