Abstract

We describe two constructions of (very) dense graphs which are edge disjoint unions of large {\em induced} matchings. The first construction exhibits graphs on $N$ vertices with ${N \choose 2}-o(N^2)$ edges, which can be decomposed into pairwise disjoint induced matchings, each of size $N^{1-o(1)}$. The second construction provides a covering of all edges of the complete graph $K\_N$ by two graphs, each being the edge disjoint union of at most $N^{2-\delta}$ induced matchings, where $\delta > 0.076$. This disproves (in a strong form) a conjecture of Meshulam, substantially improves a result of Birk, Linial and Meshulam on communicating over a shared channel, and (slightly) extends the analysis of H{\aa}stad and Wigderson of the graph test of Samorodnitsky and Trevisan for linearity. Additionally, our constructions settle a combinatorial question of Vempala regarding a candidate rounding scheme for the directed Steiner tree problem.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call