Abstract

Spider dragline silk is well recognized due to its excellent mechanical properties. Dragline silk protein mainly consists of two proteins, namely, major ampullate spidroin 1 (MaSp1) and major ampullate spidroin 2 (MaSp2). The MaSp N-terminal domain (NTD) conformation displays a strong dependence on ion and pH gradients, which is crucial for the self-assembly behavior of spider silk. In the spider major ampullate gland, where the pH is neutral and concentration of NaCl is high, the NTD forms a monomer. In contrast, within the spinning duct, where pH becomes more acidic (to pH ~ 5) and the concentration of salt is low, NTD forms a dimer in antiparallel orientation. In this study, we report near-complete backbone and side chain chemical shift assignment of the monomeric form of NTD of MaSp2 from Nephila clavipes at pH 7 in the presence of 300mM NaCl. Our NMR data demonstrate that secondary structure of monomeric form of NTD MaSp2 consists of five helix regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call