Abstract

Near-lossless compression yielding strictly bounded reconstruction error is proposed for high-quality compression of remote sensing images. A classified causal differential pulse code modulation scheme is presented for optical data, either multi/hyperspectral three-dimensional (3-D) or panchromatic two-dimensional (2-D) observations. It is based on a classified linear-regression prediction, followed by context-based arithmetic coding of the outcome prediction errors and provides excellent performances, both for reversible and for irreversible (near-lossless) compression. Coding times are affordable thanks to fast convergence of training. Decoding is always real time. If the reconstruction errors fall within the boundaries of the noise distributions, the decoded images will be virtually lossless even though encoding was not strictly reversible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.