Abstract

Polarization sensitive optical coherence tomography (PS-OCT) and near-IR (NIR) imaging are promising new technologies under development for monitoring early carious lesions. Fluorosis is a growing problem in the U.S., and the more prevalent mild fluorosis can be visually mistaken for early enamel demineralization. Some initial NIR images suggest that enamel defects and dental caries manifest different optical behavior in the NIR. Unfortunately, there is little quantitative information available regarding the differences in optical properties of sound enamel, enamel developmental defects, and demineralized enamel due to caries. This study tested the hypothesis that hypomineralized enamel due to fluorosis can be differentiated from demineralized enamel due to caries using NIR and PS-OCT imaging because of different optical behavior in the NIR. Thirty extracted human teeth with various degrees of suspected fluorosis and/or caries were imaged using PS-OCT and NIR transillumination. An InGaAs camera and a near-IR diode laser were used to measure the optical attenuation through transverse tooth sections (~200 &mgr;m). Developmental defects were clearly visible in the polarization-resolved OCT images, demonstrating that PS-OCT can be used to nondestructively measure the depth and possible severity of the defects. Enamel defects on whole teeth that could be imaged with high contrast with visible light were transparent in the near-IR while demineralized areas due to caries were opaque. In contrast, dental caries could be clearly distinguished from sound enamel. This study suggests that PS-OCT and NIR methods may potentially be used as tools to assess the severity and extent of enamel defects and for the differentiation of mild fluorosis defects from early carious lesions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call