Abstract
Near-infrared (NIR)-light-controlled drug release has aroused great interest because of its advantages in spatiotemporal control. Herein, a photothermally induced morphology transition of the nanoparticles (NPs) for supersensitive drug release has been demonstrated. Doxorubicin (DOX)- and cyanine (Cy)-coloaded thermosensitive poly(ether amine) NPs (DOX&Cy@PEA81) were developed. Because of the photothermal activity of Cy upon irradiation, increase in temperature at the tumor site results, which would be used not only for photothermal therapy but also to spur the release of DOX from the NPs for tunable chemotherapy. The NIR-laser-driven DOX release was validated by a series of intracellular and in vivo experiments on animals. Meanwhile, the chemo-photothermal combinatorial therapy results in optimal cytotoxicity and tumor inhibition. This article provides a promising approach to realizing supersensitive drug release and synergistic chemo-photothermal therapy for cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.