Abstract

Structured surfaces composed of subwavelength-sized features offer multifunctional properties including antireflective characteristics that are increasingly important for the development of micro-optical components. Here, three-dimensional (3-D) direct laser writing, via two-photon polymerization, is used to fabricate planoconvex spherical microlenses with antireflective structured surfaces. The surfaces are composed of subwavelength-sized conicoid structures, which are arranged fully conformal to the convex surface of the microlenses. The dimensions of the conicoid structures are optimized to effectively reduce Fresnel reflection loss over a wide band in the near-infrared spectral range from 1.4 to 2.2 μm, with a maximum reduction at 1.55 μm. Infrared reflection and transmission measurements are used, in combination with 3-D finite element calculations, to investigate the performance of the microlenses. The experimental results reveal that in the spectral range from 1.4 to 2.2 μm an effective suppression of the Fresnel reflection loss at the convex surface of spherical microlenses can be achieved. The transmittance enhancement is ranging from 1% to 3% for spherical microlenses with antireflective structured surfaces, in comparison to an uncoated reference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.