Abstract

With the ever increasing importance of testing drug quality, rapid analytical methods are needed for supervision of Chinese herbal medicines. Near-infrared spectroscopy is one of the most powerful tools in quality assessment of Chinese herbal medicines. In this work, near-infrared spectroscopy was applied to develop a rapid method for quantitative determination of typhaneoside and isorhamnetin-3-O-glucoside in different processed products of Pollen Typhae. A total of 71 batches of samples were collected from different regions in China. After acquisition of near-infrared spectra, different pre-processing methods were compared, and a competitive adaptive reweighted sampling algorithm was used to perform the variable selection. Then a partial least squares regression algorithm was applied to build the quantitative models. The root mean square error of calibration, root mean square error of cross validation, and root mean square error of prediction were 0.0190, 0.0364, and 0.0158%, respectively, for a quantitative model of typhaneoside. The root mean square error of calibration, root mean square error of cross validation, and root mean square error of prediction were 0.0190, 0.0377, and 0.0170%, respectively, for a quantitative model of isorhamnetin-3-O-glucoside. Moreover, the relative prediction deviation values of both quantitative models were larger than 3, indicating good performance of the partial least squares (PLS) models. The results demonstrated that high accuracy prediction of typhaneoside and isorhamnetin-3-O-glucoside could be obtained by near-infrared spectroscopy, to allow an alternative method for quality assessment of different processed products of Pollen Typhae.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.