Abstract

Although being the golden standard for intrapartum fetal surveillance, cardiotocography (CTG) has been shown to have poor specificity for detecting fetal acidosis. Non-invasive near-infrared-spectroscopy (NIRS) monitoring of placental oxygenation during labour has not been studied yet. The objective of the study was to determine whether changes in placental NIRS values during labour could identify intrapartum fetal hypoxia and resulting acidosis. We included 43 healthy women in active stage of labour at term. CTG and NIRS parameters in groups with vs. without neonatal umbilical artery pH ≤ 7.20 were compared using Mann-Whitney-U. Receiver-operating-characteristics (ROC) curves were used to estimate predictive value of CTG and NIRS parameters for neonatal pH ≤ 7.20. A computer-based statistical classification was also performed to further evaluate predictive values of CTG and NIRS for neonatal acidosis. Ten (23%) neonates were born with umbilical artery pH ≤ 7.20. Compared to group with pH > 7.20, fetal acidosis was associated with more episodes of placental NIRS deoxygenation (9 (range 2–37) vs. 2 (range 0–65); p<0.001), higher velocity of placental NIRS deoxygenation (2.31 (range 0–22) vs. 1 (range 0–49) %/s; p = 0.03), more decelerations on CTG (25 (range 3–91) vs. 10 (range 10–60); p = 0.02), and more prolonged decelerations on CTG (2 (range 0–4) vs. 1 (range 0–3); p = 0.04). Number of placental deoxygenations had the highest prognostic value for fetal/neonatal acidosis (area under the ROC curve 0.85 (95% confidence interval 0.70–0.99). Computer-based classification also identified number of placental deoxygenations as the most accurate classifier, with 25% false positive and 93% true positive rate in the training dataset, with 100% accuracy when applied to the testing dataset. Placental deoxygenations during labour measured by NIRS are associated with fetal/neonatal acidosis. Predictive value of placental NIRS for neonatal acidosis was superior to that of CTG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.