Abstract

The largest uranium-phosphate deposit in Brazil also contains considerable levels of rare earth elements (REEs), which allows for the co-mining of these three ores. The most common methods for REE determination are time-consuming and demand complex sample preparation and use of hazardous reagents. Thus, the development of a safer and faster method to predict REEs in soil could aid in the assessment of these elements. We investigated the efficiency of near-infrared (NIR) spectroscopy to predict REEs in the soil of the uranium-phosphate deposit of Itataia, Brazil. We collected 50 composite topsoil samples in a well-distributed sampling grid along the deposit. The NIR measures in the soils ranged from 750 to 2500 nm. Three partial least squares regressions (PLSR) were selected to calibrate the spectra: full-spectrum partial least squares (PLS), interval partial least squares (iPLS), and successive projections algorithms for interval selection in partial least squares (iSPA-PLS). The concentrations of REEs were measured by inductively coupled plasma optical emission spectroscopy (ICP-OES). In addition to raw spectral data, we also used spectral pretreatments to investigate the effects on prediction results: multiplicative scatter correction (MSC), Savitzky-Golay derivatives (SG), and standard normal variate transformation (SNV). Positive results were obtained in PLS for La and ΣLREE using MSC pretreatment and in iSPA-PLS for Nd and Ce using raw data. The accuracy of the measurements was related to the REE concentration in soil; i.e., elements with higher concentrations tended to present more accurate results. The results obtained here aim to contribute to the development of NIR spectroscopy techniques as a tool for mapping the concentrations of REEs in topsoil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.