Abstract

This work presents a near-infrared spectroscopy-based technique to measure the glucose concentration in an aqueous solution. A near-infrared light source sends optical energy through a glucose-water solution. The energy transmitted through the aqueous solution is received by a photodetector and a conditioning circuit that includes an operational amplifier and a low-pass filter to remove high-frequency noise. The received light intensity converted to DC voltage is found to be inversely proportional to the glucose concentration in the aqueous solution. The experimental results for glucose concentration in the range of 0–4000 mg/dL confirm the expected theoretical behavior. The sensitivity of the system is 26.25 μV/mgdL-1. The proposed glucose detection system is a promising tool for monitoring glucose levels in various industries, including food and beverage quality and healthcare.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.