Abstract

Lanthanide-doped near-infrared (NIR) photocatalyst still obstructed by the less impressive photocatalytic efficiency and stability. In this work, we report a novel strategy by introducing the lanthanide-doped ferroelectric perovskites of SiTiO3 and Sr2Bi4Ti4O15 into the glass-ceramic (GC), then an efficient and stable NIR photocatalyst was fabricated through the method of facile in-situ HCl etching GC. The results show that Sr2Bi4Ti4O15, SrTiO3, and BiOCl were exposed to the superficial coating of the core-shell structured photocatalyst and constructed Z-scheme heterojunction, the heterojunction with built-in electric field could significantly facilitate the charge carriers separation and harvest NIR light for photocatalytic reaction simultaneously. The evident increase of Lewis basic sites over defect-rich photocatalyst is found, the •O2- and •OH radicals are generated. During the degradation of norfloxacin (NOR) under NIR light irradiation for 90 min, the NOR degradation rate is 86% (TOC removal rate is 30.7%), the high apparent quantum yield of 2.3% is achieved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call