Abstract

A successful application of NIR spectroscopy (NIRS) in combination with multivariate data analysis (MVA) for the simultaneous identification and particle size determination of amoxicillin trihydrate particles was developed. Particle size analysis was ascertained by NIRS in diffuse reflection mode on different particle size fractions of amoxicillin trihydrate with D90 particle diameters ranging from 6.9 to 21.7 μm. The present problem of fractionating the powder into good enough size fractions to achieve a stable calibration model was solved. By probing dried suspensions measurement parameters were optimized and further combined with the best suitable chemometric operations. Thereby the quality of established regression models could be improved considerably. A linear coherence between particle size and absorbance signal was found at specific wavenumbers. Satisfactory clustering by particle size was achieved by principal component analysis (PCA) whereas partial least squares regression (PLSR) and principal component regression (PCR) was compared for quantitatively calibrating the NIRS data. PLSR turned out to predict unknown test samples slightly better than PCR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.