Abstract

Telocytes (TCs) are a brand-new cell type frequently observed in the interstitial space of many organs (see www.telocytes.com). TCs are defined by very long (tens of micrometers) and slender prolongations named telopodes. At their level, dilations—called podoms (~300 nm), alternate with podomers (80–100 nm). TCs were identified in a myometrial interstitial cell culture based on morphological criteria and by CD34 and PDGF receptor alpha (PDGFRα) immunopositivity. However, the mechanism(s) of telopodes formation and/or elongation and ramification is not known. We report here the low-level laser stimulation (LLLS) using a 1,064-nm neodymium-doped yttrium aluminum garnet (Nd:YAG) laser (with an output power of 60 mW) of the telopodal lateral extension (TLE) growth in cell culture. LLLS of TCs determines a higher growth rate of TLE in pregnant myometrium primary cultures (10.3 ± 1.0 μm/min) compared to nonpregnant ones (6.6 ± 0.9 μm/min). Acute exposure (30 min) of TCs from pregnant myometrium to 1 μM mibefradil, a selective inhibitor of T-type calcium channels, determines a significant reduction in the LLLS TLE growth rate (5.7 ± 0.8 μm/min) compared to LLLS per se in same type of samples. Meanwhile, chronic exposure (24 h) completely abolishes the LLLS TLE growth in both nonpregnant and pregnant myometria. The initial direction of TLE growth was modified by LLLS, the angle of deviation being more accentuated in TCs from human pregnant myometrium than in TCs from nonpregnant myometrium. In conclusion, TCs from pregnant myometrium are more susceptible of reacting to LLLS than those from nonpregnant myometrium. Therefore, some implications are emerging for low-level laser therapy (LLLT) in uterine regenerative medicine.

Highlights

  • Thorough knowledge of the structure of the uterine wall is essential to contribute to the understanding of reproductive function

  • The maximal length of telopodal lateral extension (TLE) upon level laser stimulation (LLLS) in telopodes from pregnant myometrium was 7.4 μm, while only a maximal growth of 2.2 μm was attained in telopodes from pregnant myometrium

  • Low-level laser therapy (LLLT) has an extensive medical use, and the idea of using sub-thermal doses of laser light dated from the early 1970s

Read more

Summary

Introduction

Thorough knowledge of the structure of the uterine wall is essential to contribute to the understanding of reproductive function. Alterations of normal function of human uterus are reported in pregnant and nonpregnant state. Often these disorders implicate the reproductive function and are difficult to manage in the absence of a specific treatment. Lasers Med Sci (2014) 29:1867–1874 www.telocytes.com) including the human uterus [1, 2]. The function of TCs is not well understood yet; evidence points towards a role of telopodes in the coordination of the surrounding cells by exosome/ectosome release [9,10,11]. Time-lapse microscopy revealed dynamically moving telopodes which were supposed to serve as guiding wires for other cells in coculture [12]. The process standing behind this dynamics of telopodes is still to be understood, and information about the biophysical properties of the telopodal plasma membrane would bring new insights

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call