Abstract

Developing light-harvesting materials with broad spectral response is of fundamental importance in full-spectrum solar energy conversion. We found that, when a series of earth-abundant metal (Cu, Co, Ni and Fe) salts are dissolved in coordinating solvents uniformly dispersed nanodots (NDs) are formed rather than fully dissolving as molecular species. The previously unrecognized formation of this condensed state is ascribed to spontaneous aggregation of molecular transition-metal-complexes (TMCs) via weak intermolecular interactions, which results in redshifted and broadened absorption into the NIR region (200-1100 nm). Typical photoredox reactions, such as carbonylation and oxidative dehydrogenation, well demonstrate the feasibility of efficient utilization of NIR light (λ>780 nm) by TMCs NDs. Our finding provides a conceptually new strategy for extending the absorption towards low energy photons in solar energy harvesting and conversion via photoredox transformations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.