Abstract
Current photocatalytic technologies mainly rely on the input of high-energy ultraviolet-visible (UV-vis) light to obtain the desired excited states with adequate energy to drive redox reactions, precluding the use of low-energy near-infrared (NIR) light that occupies ~50% of the solar spectrum. Here, we report the efficient utilization of NIR light by coupling the low-energy NIR photons with reactive biomass conversion. A unique mechanism of photothermally synergistic photocatalysis was revealed for the selective biomass conversion under NIR light. Using biomass-derived 5-hydroxymethylfurfural (HMF) conversion as a model reaction, it was found that NIR and UV-vis light featured markedly different reaction patterns. 5-Formyl-2-furancarboxylic acid (FFCA) was almost exclusively produced under NIR light, whereas UV-vis light favored the formation of 2,5-diformylfuran (DFF) as the major product. This work provides a paradigm for sustainable and selective chemical synthesis using the Earth's abundant resources, sunlight and biomass.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.