Abstract

Osteoporosis (OP) is one of the most common diseases in the elderly, and it is not effectively solved by current treatments. Mesenchymal stem cells (MSCs) have multiple differentiation potentials, which can induce osteogenic differentiation to treat OP; however, it is important to understand how to remotely control and detect osteogenic differentiation in vivo in real time. Here, we developed an upconversion nanoparticle (UCNP)-based photoresponsive nanoplatform for near-infrared (NIR) light-mediated control of intracellular icariin (ICA) release to regulate the osteogenic differentiation of MSCs for OP therapy. We simultaneously detected osteogenic differentiation in vivo in real time to evaluate the treatment effects. The Tm/Er-doped UCNPs were synthesized and coated with mesoporous silica (UCNP@mSiO2) first. Then, the photocaged linker 4-(hydroxymethyl)-3-nitrobenzoic acid (ONA) and the PEG linker (OH-PEG4-MAL) were linked to the surface of UCNP@mSiO2 to conjugate to the cap β-cyclodextrin (β-CD) and the Arg-Gly-Asp (RGD)-targeted peptide/matrix metalloproteinase 13 (MMP13)-sensitive peptide-BHQ (CGPLGVRGK-BHQ3) to form the UCNP nanoplatform (UCNP@mSiO2-peptide-BHQ-ONA-CD) for drug loading. Under 980 nm NIR light, the upconverted UV from the UCNPs triggered the cleavage of cap β-CD and the intracellular release of ICA to induce the osteogenic differentiation of MSCs for OP therapy. Meanwhile, MMP13, which was produced by osteogenic differentiation of MSCs, cleaved the MMP13-sensitive peptide to remove BHQ and recover the fluorescence of UCNPs, allowing real-time detection of osteogenic differentiation and the evaluation of the OP treatment effect. This photoresponsive UCNP nanoplatform has the potential to be used for the remote control and real-time detection of osteogenic differentiation of MSCs for OP therapy by NIR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.