Abstract

Advances in microsurgical techniques have increased the use of free tissue transfer. Methods of intraoperative flap perfusion assessment, however, still rely primarily on subjective evaluation of traditional clinical parameters. Anastomotic thrombosis, if not expeditiously identified and revised, can result in flap loss with significant associated morbidity. This study aims to evaluate the use of near-infrared (NIR) fluorescence imaging in the assessment of microsurgical anastomotic patency, thrombosis, and vascular revision. A model of pedicle thrombosis was created using bilateral abdominal flaps isolated on deep superior epigastric vascular pedicles in four Yorkshire pigs. Following flap elevation, microvascular arterial and venous anastomoses were performed unilaterally, preserving an intact contralateral control flap. Thrombosis was induced at the arterial anastomosis site using ferric chloride, and both flaps imaged using NIR fluorescence angiography. The thrombosed vascular segments were subsequently excised and new anastomoses performed to restore flow. Follow-up imaging of both flaps was then obtained to confirm patency using fluorescence imaging technology. Pedicled abdominal flaps were created and successful anastomotic thrombosis was induced unilaterally in each pig. Fluorescence imaging technology identified large decreases in tissue perfusion of the thrombosed flap within 2 minutes. After successful revision anastomosis, NIR imaging demonstrated dramatic increase in flow to the reconstructed flap, but intensity did not return to pre-thrombosis levels. Early identification of anastomotic thrombosis is important in successful free tissue transfer. Real-time, intraoperative evaluation of flap perfusion, anastomotic thrombosis, and successful revision can be performed using NIR fluorescence imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.