Abstract

Adenosine triphosphate (ATP), as an indispensable biomolecule, is the main energy source of cells and is used as a marker for diseases such as cancer and fatty liver. It is of great significance to design a near-infrared fluorescent nanoprobe with excellent performance and apply it to various disease models. Here, a near-infrared fluorescent nanoprobe (ZIF-90@SiR) based on a zeolitic imidazole framework is proposed. The fluorescent nanoprobes are synthesized by encapsulating the dye (SiR) into the framework of ZIF-90. Upon the addition of ATP, the structure of the ZIF-90@SiR nanoprobe is disrupted and SiR is released to generate near-infrared fluorescence at 670 nm. In the process of ATP detection, ZIF-90@SiR shows high sensitivity and good selectivity. Moreover, the ZIF-90@SiR nanoprobe has good biocompatibility due to its low toxicity to cells. It is used for fluorescence imaging of ATP in living cells and thus distinguishing normal cells and cancer cells, as well as distinguishing fatty liver cells. Due to excellent near-infrared fluorescence properties, the ZIF-90@SiR nanoprobe can not only distinguish normal mice and tumor mice but also differentiate normal mice and fatty liver mice for the first time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.