Abstract

The role of the lymphatics in the clearance of cerebrospinal fluid (CSF) from the brain has been implicated in multiple neurodegenerative conditions. In premature infants, intraventricular hemorrhage causes increased CSF production and, if clearance is impeded, hydrocephalus and severe developmental disabilities can result. In this work, we developed and deployed near-infrared fluorescence (NIRF) tomography and imaging to assess CSF ventricular dynamics and extracranial outflow in similarly sized, intact non-human primates (NHP) following microdose of indocyanine green (ICG) administered to the right lateral ventricle. Fluorescence optical tomography measurements were made by delivering ~10 mW of 785 nm light to the scalp by sequential illumination of 8 fiber optics and imaging the 830 nm emission light collected from 22 fibers using a gallium arsenide intensified, charge coupled device. Acquisition times were 16 seconds. Image reconstruction used the diffusion approximation and hard-priors obtained from MRI to enable dynamic mapping of ICG-laden CSF ventricular dynamics and drainage into the subarachnoid space (SAS) of NHPs. Subsequent, planar NIRF imaging of the scalp confirmed extracranial efflux into SAS and abdominal imaging showed ICG clearance through the hepatobiliary system. Necropsy confirmed imaging results and showed that deep cervical lymph nodes were the routes of extracranial CSF egress. The results confirm the ability to use trace doses of ICG to monitor ventricular CSF dynamics and extracranial outflow in NHP. The techniques may also be feasible for similarly-sized infants and children who may suffer impairment of CSF outflow due to intraventricular hemorrhage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.